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This document is meant as a follow-up to the presentation to CALM on 25 November

2019, by Andreas Tsanakas. Here we aim to illustrate some basic functionalities of the

SWIM R package, on an simplified example of an insurance portfolio. The code is

written to be easily applicable to a user’s own simulated scenarios and is also provided

separately. For more on SWIM, see https://cran.r-project.org/web/packages/

SWIM/index.html. A longer user guide for the package, illustrating a wider range of

functionalities is in preparation.

First make sure to install and load the SWIM package. To produce matrices of plots,

the gridExtra package is also useful.

### install and load package

# install.packages("SWIM")

library(SWIM)

### load table of simulations, that was saved as a csv file

dat <- read.csv("example_data.csv",header=T)

### let's have a look a the first few rows

head(dat)

## Y X1 X2 X3 X4

## 1 326.9935 147.9126 159.7889 1.062697 0.0021683060

## 2 408.7388 212.8642 223.0332 1.004764 0.0254834838
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## 3 345.1352 139.9741 189.5972 1.047225 0.0007566604

## 4 356.2930 139.7702 196.8030 1.058590 0.0003710395

## 5 418.3190 210.5270 209.4139 1.035085 0.4548199785

## 6 372.1750 142.0501 225.5039 1.012572 0.0148598422

In the example we are considering, we have loaded a talbe of 1 million, simulations

of 5 variables. The first column (variable Y ) corresponds to total portfolio loss, while

columns 2-5 (variables X1 to X4) are risk factors. In particular, X1 and X2 are gross

claims from two lines of business, X3 is a common risk driver, and X4 is the percentage

of reinsurance recovery lost because of RI credit risk.

We start by performing a reverse stress test. We produce a stressed model, such

that the 90% VaR of the portfolio loss is increased by 10% while the 90% TVaR (or

“Expected Shortfall”) is increased by 13%. Then we show statistics for all variables

under the baseline and stressed models.

### perform stress using the stress_VaR_ES function

### the outcome of this stress is stored in the object str1

str1 <- stress_VaR_ES(x = dat, alpha = 0.9, q_ratio = 1.1, s_ratio = 1.13, k = 1)

### the summary of the object str1 gives statistics for all variables

summary(str1, base = TRUE)

## $base

## Y X1 X2 X3 X4

## mean 361.493311 149.6701119 199.92240611 1.04992000 9.927799e-02

## sd 36.094535 34.5272146 20.05549626 0.01988193 1.988826e-01

## skewness 0.365937 0.6297829 0.20496335 0.02624693 2.472193e+00

## ex kurtosis 1.264028 0.4866342 0.08842275 -0.05804328 5.598707e+00

## 1st Qu. 337.274275 124.9760376 185.94730276 1.03646282 1.211057e-05

## Median 363.825856 145.8406103 199.29600013 1.04977616 3.278576e-03

## 3rd Qu. 380.284354 170.3898348 212.98973575 1.06325987 8.423168e-02

##

## $`stress 1`

## Y X1 X2 X3 X4

## mean 371.34463 157.2183398 201.78170715 1.05053140 1.430086e-01

## sd 49.77232 43.1406744 21.10639323 0.01998464 2.571302e-01

## skewness 1.16707 0.9284355 0.26179025 0.02953619 1.943946e+00

## ex kurtosis 2.05468 0.6848267 0.08091403 -0.06806144 2.616560e+00
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## 1st Qu. 339.63483 126.7429017 187.06325967 1.03702518 2.254619e-05

## Median 368.02305 149.2328843 200.82062226 1.05036968 6.093783e-03

## 3rd Qu. 382.92536 178.5004508 215.30738600 1.06391778 1.478615e-01

Furthermore, the distribution of the portfolio loss Y under the baseline and stressed

models can be easily plotted.

### plot distributions under the baseline and stressed models

plot_cdf(str1, xCol = 1, base = TRUE)
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The cdf under the stressed model is lower, which indicates an increase in risk, par-

ticularly in the tail. The respective histograms give a consistent picture:

plot_hist(str1, xCol = 1, base = TRUE)
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As part of reverse stress testing, one can monitor how the distributions of different

risk factors change, when the portfolio loss is stressed. For this we plot the cumulative

distribution functions of all four risk factors.

# install.packages("gridExtra")

library(gridExtra)

### to arrange plots nicely, first store them as objects...

pX1 <- plot_cdf(str1, xCol = 2, base = TRUE)

pX2 <- plot_cdf(str1, xCol = 3, base = TRUE)

pX3 <- plot_cdf(str1, xCol = 4, base = TRUE)

pX4 <- plot_cdf(str1, xCol = 5, base = TRUE)

### ...and than use grid.arrange to display them

grid.arrange(pX1,pX2,pX3,pX4,ncol=2,nrow=2)
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We see that the distributions of claims from the 1st LoB (X1) and of reisurance

credit risk (X4) are the most heavily impacted. This indicates that, under the reverse

stress test conducted, these are the most influential variables.

It is notable that the common risk driver X3 does not appear very impactful. This

is explained by its very low volatility. But the risk driver could still have a substantial

impact, e.g. if assumptions around its mean are revised. To see such an impact, we

carry out a different stress to the model, now increasing the mean of X3 by 5%.

### first work out the mean under the baseline model...

meanX3.base <- mean(dat$X3)

### ... and its stressed value

meanX3.new <- 1.05 * meanX3.base

### Use the stress_mean function to change the mean of X3

### Note that k=4 means that we are selecting the 4th column in our data for stressing

str2 <- stress_mean(x = dat, k = 4, new_means = meanX3.new)

We can now consider the impact of the shift in the risk driver on the portfolio. For

this we will compare VaR values for the portfolio loss before and after the stress.
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### baseline VaRs at 95%, 99%, 99.5% levels, using standard R

quantile(x = dat$Y, probs = c(0.95, 0.99, 0.995))

## 95% 99% 99.5%

## 422.1639 465.6980 480.5237

### stressed VaRs using SWIM

quantile_stressed(str2, xCol=1, probs = c(0.95, 0.99, 0.995))

## Y

## 95% 442.3064

## 99% 491.4105

## 99.5% 503.1711

Hence, we see that a change in the mean of the risk driver can have a very substantial

effect on the tail of the portfolio loss.
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